Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38351434

RESUMO

The nature and extent of diversity in the plankton has fascinated scientists for over a century. Initially, the discovery of many new species in the remarkably uniform and unstructured pelagic environment appeared to challenge the concept of ecological niches. Later, it became obvious that only a fraction of plankton diversity had been formally described, because plankton assemblages are dominated by understudied eukaryotic lineages with small size that lack clearly distinguishable morphological features. The high diversity of the plankton has been confirmed by comprehensive metabarcoding surveys, but interpretation of the underlying molecular taxonomies is hindered by insufficient integration of genetic diversity with morphological taxonomy and ecological observations. Here we use planktonic foraminifera as a study model and reveal the full extent of their genetic diversity and investigate geographical and ecological patterns in their distribution. To this end, we assembled a global data set of ~7600 ribosomal DNA sequences obtained from morphologically characterised individual foraminifera, established a robust molecular taxonomic framework for the observed diversity, and used it to query a global metabarcoding data set covering ~1700 samples with ~2.48 billion reads. This allowed us to extract and assign 1 million reads, enabling characterisation of the structure of the genetic diversity of the group across ~1100 oceanic stations worldwide. Our sampling revealed the existence of, at most, 94 distinct molecular operational taxonomic units (MOTUs) at a level of divergence indicative of biological species. The genetic diversity only doubles the number of formally described species identified by morphological features. Furthermore, we observed that the allocation of genetic diversity to morphospecies is uneven. Only 16 morphospecies disguise evolutionarily significant genetic diversity, and the proportion of morphospecies that show genetic diversity increases poleward. Finally, we observe that MOTUs have a narrower geographic distribution than morphospecies and that in some cases the MOTUs belonging to the same morphospecies (cryptic species) have different environmental preferences. Overall, our analysis reveals that even in the light of global genetic sampling, planktonic foraminifera diversity is modest and finite. However, the extent and structure of the cryptic diversity reveals that genetic diversification is decoupled from morphological diversification, hinting at different mechanisms acting at different levels of divergence.

2.
J Hazard Mater ; 466: 133652, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309158

RESUMO

This study investigates the ecotoxicological effects of BDE-209, a persistent organic pollutant (POP) prevalent in Kuwait's coastal-industrial areas, on benthic foraminiferal communities. We conducted a mesocosm experiment in which we exposed benthic foraminiferal communities sampled from the coastal-industrial areas of Kuwait to a gradient of BDE-209 concentrations (0.01 to 20 mg/kg). The impact of exposure was assessed using live-staining and metabarcoding techniques. Despite the significantly different taxonomic compositions detected by the two techniques, our results show that BDE-209 significantly affects foraminiferal communities, with moderately high concentrations leading to reduced α-diversity and considerable taxonomic shifts in both molecular and morphological assemblages. At concentrations of 10 and 20 mg/kg, no living foraminifera were detected after 8 weeks, suggesting a threshold for their survival under BDE-209 exposure. The parallel responses of molecular and morphological communities confirm the reliability of both assessment methods. This study is the first to investigate the reaction of eukaryotic communities, specifically foraminifera, to POPs such as BDE-209, generating valuable insights that have the potential to enhance field studies and aid the refinement of sediment quality guidelines.


Assuntos
Foraminíferos , Sedimentos Geológicos , Éteres Difenil Halogenados , Foraminíferos/genética , Biodiversidade , Reprodutibilidade dos Testes , Monitoramento Ambiental/métodos
3.
PLoS One ; 19(2): e0298440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422100

RESUMO

Environmental DNA metabarcoding reveals a vast genetic diversity of marine eukaryotes. Yet, most of the metabarcoding data remain unassigned due to the paucity of reference databases. This is particularly true for the deep-sea meiofauna and eukaryotic microbiota, whose hidden diversity is largely unexplored. Here, we tackle this issue by using unique DNA signatures to classify unknown metabarcodes assigned to deep-sea foraminifera. We analyzed metabarcoding data obtained from 311 deep-sea sediment samples collected in the Clarion-Clipperton Fracture Zone, an area of potential polymetallic nodule exploitation in the Eastern Pacific Ocean. Using the signatures designed in the 37F hypervariable region of the 18S rRNA gene, we were able to classify 802 unassigned metabarcodes into 61 novel lineages, which have been placed in 27 phylogenetic clades. The comparison of new lineages with other foraminiferal datasets shows that most novel lineages are widely distributed in the deep sea. Five lineages are also present in the shallow-water datasets; however, phylogenetic analysis of these lineages separates deep-sea and shallow-water metabarcodes except in one case. While the signature-based classification does not solve the problem of gaps in reference databases, this taxonomy-free approach provides insight into the distribution and ecology of deep-sea species represented by unassigned metabarcodes, which could be useful in future applications of metabarcoding for environmental monitoring.


Assuntos
DNA Ambiental , Foraminíferos , Filogenia , DNA Ribossômico , Bases de Dados Factuais , Foraminíferos/genética , Água
4.
Evolution ; 77(11): 2472-2483, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37672006

RESUMO

The enormous population sizes and wide biogeographical distribution of many microbial eukaryotes set the expectation of high levels of intraspecific genetic variation. However, studies investigating protist populations remain scarce, mostly due to limited 'omics data. Instead, most genetics studies of microeukaryotes have thus far relied on single loci, which can be misleading and do not easily allow for detection of recombination, a hallmark of sexual reproduction. Here, we analyze >40 genes from 72 single-cell transcriptomes from two morphospecies-Hyalosphenia papilio and Hyalosphenia elegans-of testate amoebae (Arcellinida, Amoebozoa) to assess genetic diversity in samples collected over four years from New England bogs. We confirm the existence of cryptic species based on our multilocus dataset, which provides evidence of recombination within and high levels of divergence between the cryptic species. At the same time, total levels of genetic diversity within cryptic species are low, suggesting that these abundant organisms have small effective population sizes, perhaps due to extinction and repopulation events coupled with efficient modes of dispersal. This study is one of the first to investigate population genetics in uncultivable heterotrophic protists using transcriptomics data and contributes towards understanding cryptic species of nonmodel microeukaryotes.


Assuntos
Amoeba , Amoeba/genética , Densidade Demográfica , Transcriptoma , Filogenia , Genética Populacional
5.
J Plankton Res ; 45(4): 652-660, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483908

RESUMO

The trophic strategies of cold-water planktonic foraminifera are not well understood due to the challenge of culturing them in polar conditions. Here, we identify previously unknown ectoplasmic and cytoplasmic projections in three species of planktonic foraminifera thriving in polar and subpolar marine environments: Globigerina bulloides, Neogloboquadrina incompta and Neogloboquadrina pachyderma. These structures were observed during routine monitoring of cultured specimens sampled from the Norwegian coast, Greenland Sea and Baffin Bay. Two types of projections were discovered, including permanent and non-permanent structures such as ectoplasmic roots, twigs and twig-like projections, similar to those observed in benthic taxa Cibicides and Cibicidoides. Additionally, a previously undescribed filopodia-like projection was observed in N. pachyderma. We discuss the function, the ecological significance and the potential impact on pelagic processes of the presence of these structures in foraminifera species that occupy diverse niches in the water column. Our findings suggest that these structures may play an important role in the trophic strategies of cold-water planktonic foraminifera, and further research and observations are necessary to fully comprehend their significance in the carbon cycle.

6.
Sci Data ; 10(1): 354, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270659

RESUMO

Planktonic Foraminifera are unique paleo-environmental indicators through their excellent fossil record in ocean sediments. Their distribution and diversity are affected by different environmental factors including anthropogenically forced ocean and climate change. Until now, historical changes in their distribution have not been fully assessed at the global scale. Here we present the FORCIS (Foraminifera Response to Climatic Stress) database on foraminiferal species diversity and distribution in the global ocean from 1910 until 2018 including published and unpublished data. The FORCIS database includes data collected using plankton tows, continuous plankton recorder, sediment traps and plankton pump, and contains ~22,000, ~157,000, ~9,000, ~400 subsamples, respectively (one single plankton aliquot collected within a depth range, time interval, size fraction range, at a single location) from each category. Our database provides a perspective of the distribution patterns of planktonic Foraminifera in the global ocean on large spatial (regional to basin scale, and at the vertical scale), and temporal (seasonal to interdecadal) scales over the past century.


Assuntos
Foraminíferos , Censos , Mudança Climática , Oceanos e Mares , Plâncton
7.
PeerJ ; 11: e15255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123000

RESUMO

Ribosomal intragenomic variability in prokaryotes and eukaryotes is a genomic feature commonly studied for its inflationary impact on molecular diversity assessments. However, the evolutionary mechanisms and distribution of this phenomenon within a microbial group are rarely explored. Here, we investigate the intragenomic variability in 33 species of planktonic foraminifera, calcifying marine protists, by inspecting 2,403 partial SSU sequences obtained from single-cell clone libraries. Our analyses show that polymorphisms are common among planktonic foraminifera species, but the number of polymorphic sites significantly differs among clades. With our molecular simulations, we could assess that most of these mutations are located in paired regions that do not affect the secondary structure of the SSU fragment. Finally, by mapping the number of polymorphic sites on the phylogeny of the clades, we were able to discuss the evolution and potential sources of intragenomic variability in planktonic foraminifera, linking this trait to the distinctive nuclear and genomic dynamics of this microbial group.


Assuntos
Foraminíferos , Foraminíferos/genética , DNA Ribossômico/química , Plâncton/genética , Filogenia , Eucariotos/genética
8.
Nat Commun ; 13(1): 7135, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414628

RESUMO

The biotic crisis following the end-Cretaceous asteroid impact resulted in a dramatic renewal of pelagic biodiversity. Considering the severe and immediate effect of the asteroid impact on the pelagic environment, it is remarkable that some of the most affected pelagic groups, like the planktonic foraminifera, survived at all. Here we queried a surface ocean metabarcoding dataset to show that calcareous benthic foraminifera of the clade Globothalamea are able to disperse actively in the plankton, and we show using molecular clock phylogeny that the modern planktonic clades originated from different benthic ancestors that colonized the plankton after the end-Cretaceous crisis. We conclude that the diversity of planktonic foraminifera has been the result of a constant leakage of benthic foraminifera diversity into the plankton, continuously refueling the planktonic niche, and challenge the classical interpretation of the fossil record that suggests that Mesozoic planktonic foraminifera gave rise to the modern communities.


Assuntos
Foraminíferos , Foraminíferos/genética , Plâncton/genética , Extinção Biológica , Planetas Menores , Fósseis
9.
Bioessays ; 44(10): e2100267, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36050893

RESUMO

Knowledge of eukaryotic life cycles and associated genome dynamics stems largely from research on animals, plants, and a small number of "model" (i.e., easily cultivable) lineages. This skewed sampling results in an underappreciation of the variability among the many microeukaryotic lineages, which represent the bulk of eukaryotic biodiversity. The range of complex nuclear transformations that exists within lineages of microbial eukaryotes challenges the textbook understanding of genome and nuclear cycles. Here, we look in-depth at Foraminifera, an ancient (∼600 million-year-old) lineage widely studied as proxies in paleoceanography and environmental biomonitoring. We demonstrate that Foraminifera challenge the "rules" of life cycles developed largely from studies of plants and animals. To this end, we synthesize data on foraminiferal life cycles, focusing on extensive endoreplication within individuals (i.e., single cells), the unusual nuclear process called Zerfall, and the separation of germline and somatic function into distinct nuclei (i.e., heterokaryosis). These processes highlight complexities within lineages and expand our understanding of the dynamics of eukaryotic genomes.


Assuntos
Foraminíferos , Animais , Biodiversidade , Eucariotos/genética , Células Eucarióticas , Foraminíferos/genética , Genoma/genética
10.
Mol Phylogenet Evol ; 174: 107546, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35690380

RESUMO

Foraminifera, classified in the supergroup Rhizaria, are a common and highly diverse group of mainly marine protists. Despite their evolutionary and ecological importance, only limited genomic data (one partial genome and nine transcriptomic datasets) have been published for this group. Foraminiferal molecular phylogeny is largely based on 18S rRNA gene sequence analysis. However, due to highly variable evolutionary rates of substitution in ribosomal genes plus the existence of intragenomic variation at this locus, the relationships between and within foraminiferal classes remain uncertain. We analyze transcriptomic data from 28 species, adding 19 new species to the previously published dataset, including members of the strongly under-represented class Monothalamea. A phylogenomic reconstruction of Rhizaria, rooted with alveolates and stramenopiles, based on 199 genes and 68 species supports the monophyly of Foraminifera and their sister relationship to Polycystinea. The phylogenomic tree of Foraminifera is very similar to the 18S rRNA tree, with the paraphyletic single-chambered monothalamids giving rise to the multi-chambered Tubothalamea and Globothalamea. Within the Monothalamea, our analyses confirm the monophyly of the giant, deep-sea xenophyophores that branch within clade C and indicate the basal position of monothalamous clades D and E. The multi-chambered Globothalamea are monophyletic and comprise the paraphyletic Textulariida and monophyletic Rotaliida. Our phylogenomic analyses support major evolutionary trends of Foraminifera revealed by ribosomal phylogenies and reinforce their current higher-level classification.


Assuntos
Foraminíferos , Rhizaria , Evolução Biológica , Foraminíferos/genética , Filogenia , RNA Ribossômico 18S/genética , Rhizaria/genética , Transcriptoma
11.
J Eukaryot Microbiol ; 69(3): e12913, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35332619

RESUMO

Foraminifera include diverse shell-building lineages found in a wide array of aquatic habitats from the deep-sea to intertidal zones to brackish and freshwater ecosystems. Recent estimates of morphological and molecular foraminifera diversity have increased the knowledge of foraminiferal diversity, which is critical as these lineages are used as bioindicators of past and present environmental perturbation. However, a comparative analysis of foraminiferal biodiversity between their major habitats (freshwater, brackish, intertidal, and marine) is underexplored, particularly using molecular tools. Here, we present a metabarcoding survey of foraminiferal diversity across different ecosystems using newly designed foraminifera-specific primers that target the hypervariable regions of the foraminifera SSU-rRNA gene (~250-300 bp long). We tested these primer sets on four foraminifera species and then across several environments: the intertidal zone, coastal ecosystems, and freshwater vernal pools. We retrieved 655 operational taxonomic units (OTUs); the majority of which are undetermined taxa that have no closely matching sequences in the reference database. Furthermore, we identified 163 OTUs with distinct habitat preferences. Most of the observed OTUs belonged to lineages of single-chambered foraminifera, including poorly explored freshwater foraminifera which encompass a clade of Reticulomyxa-like forms. Our pilot study provides the community with an additional set of newly designed and taxon-specific primers to elucidate foraminiferal diversity across different habitats.


Assuntos
Foraminíferos , Biodiversidade , Ecossistema , Monitoramento Ambiental , Foraminíferos/genética , Sedimentos Geológicos , Projetos Piloto
12.
Chemosphere ; 298: 134239, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35292278

RESUMO

Environmental (e)DNA metabarcoding holds great promise for biomonitoring and ecotoxicological applications. However, few studies have compared the performance of eDNA versus eRNA metabarcoding in assessing organismal response to marine pollution, in experimental conditions. Here, we performed a chromium (Cr)-spiked mesocosm experimental test on benthic foraminiferal community to investigate the effects on species diversity by analysing both eDNA and eRNA metabarcoding data across different Cr concentrations in the sediment. Foraminiferal diversity in the eRNA data showed a significant negative correlation with the Cr concentration in the sediment, while a positive response was observed in the eDNA data. The foraminiferal OTUs exhibited a higher turnover rate in eRNA than in the eDNA-derived community. Furthermore, in the eRNA samples, OTUs abundance was significantly affected by the Cr gradient in the sediment (Pseudo-R2 = 0.28, p = 0.05), while no significant trend was observed in the eDNA samples. The correlation between Cr concentration and foraminiferal diversity in eRNA datasets was stronger when the less abundant OTUs (<100 reads) were removed and the analyses were conducted exclusively on OTUs shared between eRNA and eDNA datasets. This indicates the importance of metabarcoding data filtering to capture ecological impacts, in addition to using the putatively active organisms in the eRNA dataset. The comparative analyses on foraminiferal diversity revealed that eRNA-based metabarcoding can better assess the response to heavy metal exposure in presence of subtle concentrations of the pollutant. Furthermore, our results suggest that to unlock the full potential for ecosystem assessment, eDNA and eRNA should be studied in parallel to control for potential sequence artifacts in routine ecosystem surveys.


Assuntos
Ecossistema , Foraminíferos , Biodiversidade , Cromo/toxicidade , Código de Barras de DNA Taxonômico/métodos , Monitoramento Ambiental/métodos , Foraminíferos/genética , RNA
13.
Glob Chang Biol ; 28(5): 1798-1808, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34913240

RESUMO

The Fram Strait plays a crucial role in regulating the heat and sea-ice dynamics in the Arctic. In response to the ongoing global warming, the marine biota of this Arctic gateway is experiencing significant changes with increasing advection of Atlantic species. The footprint of this 'Atlantification' has been identified in isolated observations across the plankton community, but a systematic, multi-decadal perspective on how regional climate change facilitates the invasion of Atlantic species and affects the ecology of the resident species is lacking. Here we evaluate a series of 51 depth-resolved plankton profiles collected in the Fram Strait during seven surveys between 1985 and 2015, using planktonic foraminifera as a proxy for changes in both the pelagic community composition and species vertical habitat depth. The time series reveals a progressive shift towards more Atlantic species, occurring independently of changes in local environmental conditions. We conclude that this trend is reflecting higher production of the Atlantic species in the Nordic Seas, from where they are advected into the Fram Strait. At the same time, we observe the ongoing extensive sea-ice export from the Arctic and associated cooling-induced decline in density and habitat shoaling of the subpolar Turborotalita quinqueloba, whereas the resident Neogloboquadrina pachyderma persists. As a result, the planktonic foraminiferal community and vertical structure in the Fram Strait shift to a new state, driven by both remote forcing of the Atlantic invaders and local climatic changes acting on the resident species. The strong summer export of Arctic sea ice has so far buffered larger plankton transformation. We predict that if the sea-ice export will decrease, the Arctic gateway will experience rapid restructuring of the pelagic community, even in the absence of further warming. Such a large change in the gateway region will likely propagate into the Arctic proper.


Assuntos
Foraminíferos , Regiões Árticas , Ecossistema , Foraminíferos/fisiologia , Camada de Gelo , Plâncton
14.
PLoS One ; 14(12): e0225246, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31805130

RESUMO

The planktonic foraminifera genus Globigerinoides provides a prime example of a species-rich genus in which genetic and morphological divergence are uncorrelated. To shed light on the evolutionary processes that lead to the present-day diversity of Globigerinoides, we investigated the genetic, ecological and morphological divergence of its constituent species. We assembled a global collection of single-cell barcode sequences and show that the genus consists of eight distinct genetic types organized in five extant morphospecies. Based on morphological evidence, we reassign the species Globoturborotalita tenella to Globigerinoides and amend Globigerinoides ruber by formally proposing two new subspecies, G. ruber albus n.subsp. and G. ruber ruber in order to express their subspecies level distinction and to replace the informal G. ruber "white" and G. ruber "pink", respectively. The genetic types within G. ruber and Globigerinoides elongatus show a combination of endemism and coexistence, with little evidence for ecological differentiation. CT-scanning and ontogeny analysis reveal that the diagnostic differences in adult morphologies could be explained by alterations of the ontogenetic trajectories towards final (reproductive) size. This indicates that heterochrony may have caused the observed decoupling between genetic and morphological diversification within the genus. We find little evidence for environmental forcing of either the genetic or the morphological diversification, which allude to biotic interactions such as symbiosis, as the driver of speciation in Globigerinoides.


Assuntos
Foraminíferos/classificação , Foraminíferos/genética , Evolução Biológica , Foraminíferos/citologia , Variação Genética , Filogenia
15.
PLoS One ; 14(3): e0213936, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30897140

RESUMO

Most research on extant planktonic foraminifera has been directed towards larger species (>0.150 mm) which can be easily manipulated, counted and yield enough calcite for geochemical analyses. This has drawn attention towards the macroperforate clade and created an impression of their numerical and ecological dominance. Drawing such conclusions from the study of such "giants" is a dangerous path. There were times in the evolutionary history of planktonic foraminifera when all species were smaller than 0.1 mm and indeed numerous small taxa, mainly from the microperforate clade, have been formally described from the modern plankton. The significance of these small, obscure and neglected species is poorly characterized and their relationship to the newly discovered hyperabundant but uncharacterized lineages of planktonic foraminifera in metabarcoding datasets is unknown. To determine, who is hiding in the metabarcoding datasets, we carried out an extensive sequencing of 18S rDNA targeted at small and obscure species. The sequences of the newly characterized small and obscure taxa match many of the previously uncharacterized lineages found in metabarcoding data. This indicates that most of the modern diversity in planktonic foraminifera has been taxonomically captured, but the role of the small and neglected taxa has been severely underestimated.


Assuntos
Foraminíferos/classificação , Foraminíferos/genética , Plâncton/classificação , Plâncton/genética , Biodiversidade , Código de Barras de DNA Taxonômico , DNA de Protozoário/genética , Evolução Molecular , Foraminíferos/ultraestrutura , Microscopia Eletrônica de Varredura , Filogenia , Filogeografia , Plâncton/ultraestrutura , RNA Ribossômico 18S/genética
16.
Mar Pollut Bull ; 129(2): 512-524, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29033170

RESUMO

Mercury (Hg) is a highly toxic element for living organisms and is known to bioaccumulate and biomagnify. Here, we analyze the response of benthic foraminifera communities cultured in mesocosm and exposed to different concentrations of Hg. Standard morphological analyses and environmental DNA metabarcoding show evidence that Hg pollution has detrimental effects on benthic foraminifera. The molecular analysis provides a more complete view of foraminiferal communities including the soft-walled single-chambered monothalamiids and small-sized hard-shelled rotaliids and textulariids than the morphological one. Among these taxa that are typically overlooked in morphological studies we found potential bioindicators of Hg pollution. The mesocosm approach proves to be an effective method to study benthic foraminiferal responses to various types and concentrations of pollutants over time. This study further supports foraminiferal metabarcoding as a complementary and/or alternative method to standard biomonitoring program based on the morphological identification of species communities.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Monitoramento Ambiental/métodos , Foraminíferos/efeitos dos fármacos , Mercúrio/análise , Poluentes Químicos da Água/análise , Biodiversidade , DNA de Protozoário/genética , Foraminíferos/classificação , Foraminíferos/genética , Sedimentos Geológicos/química , Itália , Mar Mediterrâneo , Mercúrio/toxicidade , Água do Mar/química , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...